OPERATING INSTRUCTIONS

TYPE 1558-A

OCTAVE BAND NOISE ANALYZER

GENERAL RADIO COMPANY

OPERATING INSTRUCTIONS

TYPE 1558-A

OCTAVE BAND NOISE

ANALYZER

Form 1558-0100-C
November, 1965

ANALYZER SERIAL NO.
MICROPHONE SERIAL NO.
MICROPHONE SENSITIVITY \qquad db re lv/ μ bar

Copyright 1962 by General Radio Company
West Concord, Massachusetts, USA

TABLE OF CONTENTS

Section 1. INTRODUCTION. 1
1.1 Purpose 1
1.2 Description 1
1.3 Controls and Connectors 2
1.4 Carrying Case 3
1.5 Accessories Supplied. 3
1.6 Relay-Rack Mounting. 3
1.7 Type 1560-P6 Microphone Assembly 3
1.8 Type 1560-P40 Preamplifier 4
Section 2. PRINCIPLES OF OPERATION 6
2.1 Microphone Preamplifier 6
2.2 Filter Circuit 6
2.3 Output Circuit 8
2.4 Calibration Circuit 8
2.5 Charge Circuit. 8
Section 3. OPERATING PROCEDURE 9
3.1 Opening and Tilting the Cabinet 9
3.2 Preliminary Checks 9
3.3 Operation with Type 1560-P6 Microphone Assembly. 9
3.4 Use of Type 1552-B Sound-Level Calibrator 11
3.5 Preamplifier Weighting 11
3.6 Operation with Sound-Level Meter 11
3.7 Operation with Type 1560-P40 Preamplifier 12
3.8 Charging the Battery 13
3.9 Background Noise 13
3.10 Effect of Presence of Observer and Instrument Case 13
3.11 Preferred Angle of Incidence 14
3.12 Carrying Strap. 14
3.13 Use as a Sound-Level Meter 14
3.14 Use of Wide-Range Microphones 15
3.15 Recording 15
Section 4. SERVICE AND MAINTENANCE. 15
4.1 General 15
4.2 Removal of Instrument from Case 16
4.3 Transistor Voltages 16
4.4 Microphone Sensitivity Adjustment 16
4.5 Internal Noise 16
4.6 Gain Check 16
PARTS LIST. 24-30

SPECIFICATIONS

Bands: (See Figures below)

LOWER CUTOFF	UPPER CUTOFF	CENTER
FREQUENCY (cps)	FREQUENCY (cps)	FREQUENCY (cps)*
18.75	37.5	26.5
37.5	75	53
75.	150	106
150	300	212
300	600	424
600	1200	848
1200	2400	1696
2400	4800	3392
4800	9600	6784
9600	19,200	13,570
LOW PASS	75	
ALL PASS		*Geometric mean

Filter Characteristics, signal applied at INPUT (SLM) terminals: For bands from 37.5 to 9600 cps , the level at the center frequency is uniform within 1 db . Maximum deviation from ALL PASS level at center frequency in any band is 1 db . For bands from 37.5 to 9600 cps , the response at the nominal cutoff frequency is $3.5 \pm 1 \mathrm{db}$ below the response at the center frequency. For all octave bands, the attenuation is at least 30 db at half the lower nominal cutoff frequency and at twice the upper nominal cutoff frequency; the attenuation is at

Typical response cbaracteristics of GR Type 1558-A Octave Band Noise Analyzer. Cbaracteristics measured at OUTPUT jack with signal applied at INPUT (SLM) terminals.
(Top) Octave-band cbaracteristics.
(Bottom) Low-pass and allpass characteristics.

SPECIFICATIONS (Cont)

least 50 db at one-fourth the lower nominal cutoff frequency and at four times the upper nominal cutoff frequency. The 75 -cycle lowpass filter has at least 30 db attenuation at 200 cps and at least 50 db attenuation at 400 cps .
Sound-Level Range: 44 to 150 db above $2 \times 10^{-4} \mu$ bar in any band when the Type 1560-P6 Microphone Assembly.
Inputs: Impedance at MIKE terminals is approximately 50 pf in parallel with $50 \mathrm{M} \Omega$. It is intended for use with high-impedance transducers such as the Type 1560-P6 Microphone Assembly.

Impedance at INPUT (SLM) terminals is approximately $100 \mathrm{k} \Omega$. Maximum input is 3 volts. This input is intended for connection to the output of a sound-level meter. Low terminal is grounded to the case.
Preamplifier Frequency Characteristics: Two characteristics are included: C weighting, which meets the requirements of the American Standards Association Specification S1.4-1961 (SLM); and 20 kc , an essentially flat response.
Outputs: Open-circuit output is at least 1 volt for full-scale meter deflection. Output impedance is 6000 ohms. Any load can be connected to the OUTPUT terminals.
Meter Response: FAST or SLOW meter response is selected by a panel control. The characteristics of each are as specified by the American Standards Association Specification S1.4-1961 for General Purpose Sound-Level Meters.
Internal Calibration: The gain of the analyzer can be calibrated by mean's of a built-in reference, for use with a piezoelectric microphone with sensitivity between -52 and -62 db re $1 \mathrm{\nabla} / \mu \mathrm{bar}$. With this calibration, the absolute accuracy for ALL PASS levels is 1 db .
Batteries: Two 9.6 -volt, rechargeable, nickel-cadmium batteries (Gould, Type $9.6 \mathrm{~V} / 450 \mathrm{~B}$) provide 30 hours of operation. To recharge them, the instrument is connected to a 115 - (or $230-$) volt. 25 - to $60-$ cycle line for 14 hours. DO NOT OVERCHARGE
Accessories Supplied: Type CAP-11 Power Cord, Type 1560-P76 Cable Assembly, Type Z2CAM-20 Carrying Strap.
Accessories Available: Type 1560-P6 Microphone Assembly: Type 1560-P34 Tripod and Extension Cable (including Type 1560-P32 Tripod and Type 1560-P73, 25 -foot Extension Cable); Type 04809752 horizontal Adaptor Set, to convert for relay-rack mounting; Type 1560-P40 Preamplifier and accessories.
Dimensions: Flip-tilt case, width $10 \frac{1}{4}$, height $9 \frac{1}{4}$, depth $7 \frac{1}{4}$ inches (260 by 235 by 185 mm), including handle.
Net Weight: $83 / 4$ pounds (4 kg).
U. S. Patent Nos. $3,012,197 ; 2,966,257 ;$ D $187,740$.

General Radio Experimenter reference: Vol. 36, No. 10, October 1962.

Figure 1-1. Views of the Type 1558-A Octave Band Noise Analyzer. (Above, left) in relay-rack adaptor; (above, right) case closed; (right) with microphone attacbed; (below) panel view.

SECTION

INTRODUCTION

1.1 PURPOSE.

The Type 1558-A Octave Band Noise Analyzer (Figure 1-1) is a portable audio-frequency spectrum analyzer, for use in the study of sound or vibration spectra. (For details of the various applications of this analyzer, refer to the General Radio Handbook of Noise Measurement.) The noise analyzer can also be used as a filter unit, a selective detector, or an analyzer for voltage spectra. It is designed to meet the requirements of the American Standard Specification for an Octave Band Filter Set for the Analysis of Noise and Other Sounds, ASA Z24.10-1953.

1.2 DESCRIPTION.

The analyzer consists of a high-impedance microphone preamplifier, a tunable filter with a noise bandwidth of 1 octave, an output amplifier, and a meter. When used with the Type $1560-\mathrm{Pb}$ Microphone Assembly, the analyzer indicates directly the sound pressure level in any of its 12 bands, for levels between 44 and 150 db , re $2 \times 10^{-4} \mu \mathrm{bar}$. The analyzer can be used with a Type 1560 -P 40 Preamplifier, which extends its sensitivity to 24 db and permits placement of the microphone at the end of a long cable. The analyzer can also be used with the Type 1551-C Sound-Level Meter for still greater sensitivity.

TYPE 1558-A OCTAVE BAND NOISE ANALYZER

1.3 CONTROLS AND CONNECTORS.

Name	Type	Function
BAND LEVEL DB (gray knob)	6-position rotary switch	Adjusts gain of output amplifier and indicates meter range.
BAND LEVEL DB (knurled dial)	5-position rotary switch	Adjusts input level to filter and indicates meter range.
BAND CPS	12-position rotary switch	Selects band.
None (Function switch)	6-position rotary switch	Turns instrument on and OFF. Selects meter speed and mode of operation (CAL, CK BAT, or CHARGE).
CAL	Thumbset control	Adjusts gain.
MIKE	Three-terminal Cannon Type XLR locking socket	High-impedance input.
$\begin{aligned} & \text { INPUT } \\ & \text { (SLM) } \end{aligned}$	Phone jack	Low-impedance ($100 \mathrm{k} \Omega$) input (maximum input 3 volts).
OUTPUT	Phone jack	Supplies 1 volt open circuit for full-scale meter indication (6000 ohms output impedance).
CHARGE BATTERY, $\begin{aligned} & 115 \mathrm{~V} \mathrm{AC} \\ & 25-60 \mathrm{C} \end{aligned}$	Two-terminal male connector	Input connector for line voltage, to charge battery.

1.4 CARRYING CASE.

The analyzer is mounted in a flip-tilt case. The captive protective cover serves as a mounting base when the instrument is in use. The friction of the rubber seal serves to keep the instrument at any convenient angle, from horizontal to vertical.

Space is provided in the cover for the Type 1560-P6 Microphone Assembly. The flexible conduit is positioned across the panel, below the BAND CPS switch, while still held in place at the MIKE terminals.

1.5 ACCESSORIES SUPPLIED.

The following accessories are supplied with the Type 1558-A Octave Band Noise Analyzer:

1 - Type CAP-11 Power Cord,
1 - Type 1570-P76 Cable Assembly,
1 - Type 2CAM-7060 Carrying Strap.

1.6 RELAY-RACK MOUNTING.

The Type 0480-9752 Adapter Set, to convert the analyzer for relayrack mounting, is available from General Radio. Complete instructions for installation are included with the set.

1.7 TYPE 1560-P6 MICROPHONE ASSEMBLY.

The Type 1560-P6 Microphone Assembly (Figure 1-2) is recommended for use with the Type 1558-A Octave Band Noise Analyzer. It consists of a piezoelectric, ceramic microphone connected to a short length of flexible conduit, which, in turn, is mounted on a swivel base. A connector on the base mates with the three-terminal input connector (MIKE) on the panel of the analyzer.

Figure 1-2. Type 1560-P6 Microphone Assembly.

TYPE 1558-A OCTAVE BAND NOISE ANALYZER

Figure 1-3. Typical random frequency response of Type 1560-P6.

1.8 TYPE 1560-P40 PREAMPLIFIER.

The Type 1560-P40 Preamplifier (Figure 1-4) is a high-input-impedance, low-noise preamplifier. It is particularly well suited for amplifying the output of piezoelectric transducers, such as microphones and vibration pickups, and for driving long connecting cables without loss in signal voltage. A switch provides a voltage gain of either $1: 1$ or $10: 1$.

The amplifier is housed in a small cylindrical case. The GR Type 1560-P5 Microphone cartridge plugs directly onto the input end of the case. Adaptors are available for connecting the preamplifier to the cartridge of the GR Type 1560-P3 Microphone, to GR874 Connectors, and to 3-terminal microphone connectors. Output from the preamplifier is through a 3 -terminal shielded connector. The required dc supply voltage is applied from one of these terminals to ground. This voltage can be obtained directly from the Type 1558-A Analyzer.

The preamplifier and accessories are available in various combinations (refer to the Appendix).

The Type $1560-\mathrm{P} 40 \mathrm{H}$ Preamplifier and Power Supply Set is selfpowered and independent of any external supply.

The Type $1560-\mathrm{P} 40 \mathrm{~J}$ Preamplifier and Adaptor Set is dependent for its power on the instrument to which it is connected, so that it should be used with the Type 1558 or 1564 Analyzer.

The Type $1560-\mathrm{P} 40 \mathrm{~K}$ Preamplifier and Microphone Set is for use with the Types 1558 and 1564 Analyzers when an acoustical measurement is needed at low levels and the microphone must be mounted at the end of a cable.

Figure 1-4. Type 1560-P40 Preamplifier.

Figure 2-1. Elementary schematic diagram of the Type 1558-A Octave Band Noise Analyzer.

SECTION 2

PRINCIPLES OF OPERATION

2.1 MICROPHONE PREAMPLIFIER.

The very low-level signals from a high-impedance transducer are amplified by the preamplifier to a level convenient for analysis. The preamplifier consists of an input attenuator, a unity-gain amplifier with a high input impedance, a weighting network, and a second attenuator and amplifier.

An elementary schematic diagram is given in Figure 2-1.

Figure 2-2. Frequency response of preamplifier.

The voltage gain of the preamplifier at mid-frequency is 20 db . An internal rotary switch can be set to give either an amplitude-frequency characteristic that is essentially flat from 20 cps to 20 kc , or one that is C weighted. The weighting switch is set in the General Radio laboratory to the 20 KC position. Figure 2-2 shows the frequency response of the preamplifier.

2.2 FILTER CIRCUIT.

A block diagram of a single filter section is shown in Figure 2-3. The filter circuit consists of three isolated, resonant sections in cascade,

PRINCIPLES OF OPERATION

with a $20-\mathrm{db}$ step attenuator between the second and third sections. The sections are staggered about the center frequency of the selected band to give a maximally flat (or Butterworth) characteristic. The nominal noise bandwidth is 1 octave.

Figure 2-3. Block diagram of a single section of the filter circuit.

Each section of the filter circuit uses a highly stabilized current amplifier and an RC feedback network. To tune the filter, both resistors and capacitors are switched in a manner that allows each set of capacitors to be used for two bands.

A normalized, magnitude-frequency characteristic is shown in Figure 2-4.

Figure 2-4. Normalized magnitude - frequency cbaracteristic of one-octave filter.

TYPE 1558-A OCTAVE BAND NOISE ANALYZER

2.3 OUTPUT CIRCUIT.

The output circuit includes a $30-\mathrm{db}$ step attenuator, an amplifier, and a meter circuit. An isolating stage ensures that a load will not affect the meter indication.

The meter circuit gives an indication that has come to be known as quasi-rms. ${ }^{1}$ The conduction angle for sinusoidal excitation is chosen to give a close approximation to rms for many types of signals.

2.4 CALIBRATION CIRCUIT.

To calibrate the analyzer, the output is connected to the input through a filter, a limiter, and a calibrated attenuator. When the gain is adjusted to equal the attenuation of this feedback network, the system oscillates at a frequency of 850 cps . The attenuation of this feedback network is adjusted by means of an internal control that is calibrated in terms of the microphone sensitivity.

2.5 CHARGE CIRCUIT.

The nickel-cadmium battery is constant-current charged through a simple half-wave rectifier and a series resistor that is connected directly to the line. When charging, the battery "floats" on the line; neither side of the line is connected to the case or to any part of the instrument except the charge circuit. DO NOTOVERCHARGE

[^0]
SECTION 3

OPERATING PROCEDURE

3.1 OPENING AND TILTING THE CABINET.

The directions for opening the Type 1558-A Octave Band Noise Analyzer are given on the handle of the flip-tilt case. Once open, the instrument can be tilted to any convenient angle, as shown in Figure 1-1. The angle should be chosen to give the most convenient access to knobs and the best view of the panel control settings and meter indication.

The instrument can be locked fully open by the same slide pins that are used to lock it when it is closed. It can be carried in the open position, with the cover firmly in place.

The flexible conduit on the Type 1560-P6 Microphone Assembly can be positioned across the panel so that it does not interfere with the closing of the case. It can remain connected to the panel MIKE terminals.

3.2 PRELIMINARY CHECKS.

3.2.1 BATTERY. To check the battery, turn the function switch to CK BAT. The meter should read in the region marked BAT. The battery will require charging after about 30 hours of operation (refer to paragraph 3.7).
3.2.2 WEIGHTING. The internal weighting switch is set to the 20 KC position in the GR laboratory. For C weighting, remove the instrument from its case and set switch S103 (on the etched board, at the left of the instrument) to the desired position. Refer to paragraph 3.5. Always turn the panel function switch to OFF before removing the instrument from the cabinet, to prevent damage to the resistors.

3.3 OPERATION WITH TYPE 1560-P6 MICROPHONE ASSEMBLY.

3.3.1 CALIBRATION CHECK. Make the following check on the amplifier gain before using the analyzer. This check is valid only when the internal

TYPE 1558-A OCTAVE BAND NOISE ANALYZER

microphone sensitivity control is set to indicate the sensitivity of the microphone being used. Refer to paragraph 4.4.
a. Set the BAND CPS switch to ALL PASS.
b. Set the white dots on both BAND LEVEL DB controls (the large knurled dial and the small gray knob) to the red reference line.
c. Set the function switch to CAL.

The meter should now indicate in the white area marked CAL. If it does not, adjust it by means of the CAL thumbset control on the panel.

3.3.2 OPERATION.

a. Place the microphone in the desired position. Detents are provided in the panel connector to hold the gooseneck assembly in place. The connector can be turned through 180°.
b. Turn both BAND LEVEL DB controls clockwise (knob and dial).
c. Set the BAND CPS switch to ALL PASS.
d. Set the function switch for the desired meter response (FAST or SLOW).
e. If the meter indicates above +10 , turn the BAND LEVEL DB knurled dial until an on-scale meter reading is obtained. If the meter indicates below zero, adjust the BAND LEVEL DB gray knob until a reading in the positive section of the meter scale is obtained. The all-pass level, in db re $2 \times 10^{-4} \mu \mathrm{bar}$, is the algebraic sum of the meter reading and the outer-scale BAND LEVEL DB indication.
f. Set the BAND CPS switch to any desired band and adjust the BAND LEVEL DB gray knob to obtain an on-scale reading on the meter. The level in the band selected is then the algebraic sum of the meter reading and the outer-scale BAND LEVEL DB indication.

CAUTION

Improper use of the BAND LEVEL DB controls can overload the preamplifier and introduce errors. Always measure the ALL PASS level before analyzing. Never readjust the knurled dial after selecting an octave band. This procedure ensures that the preamplifier is not overloaded and allows the entire potential analyzing range of the instrument to be realized.

3.4 USE OF TYPE 1552-B SOUND.LEVEL CALIBRATOR.

The Type 1558 -A Octave Band Noise Analyzer contains an internal calibrator that checks the electrical circuits only. For a check on the complete system calibration (including the microphone), the Type 1552-B SoundLevel Calibrator is recommended. This calibrator includes a closed coupler and a driving loudspeaker that produces a known sound-pressure level at the microphone of the analyzer.

3.5 PREAMPLIFIER WEIGHTING.

The selection of one of three frequency characteristics is made by means of an internal, three-position, rotary switch S103 (see Figures 4-3 and 4-6) The three switch positions are labeled $20 \mathrm{KC}, \mathrm{C}$ RANDOM, and C PERP

The 20 KC characteristic is the most uniform.
The C weighting characteristics are included because it has been common practice to analyze signals that have passed through a sound-level meter set to C weighting. The C RANDOM position of the switch gives a response for the combination of the preamplifier and the Type 1560-P6 Microphone Assembly that conforms to the requirements of the American Standards Association Specification ASA S1.4-1961 (SLM), for sounds arriving at random incidence. In the C PERP position, compensation is made for the directivity of the microphone, to produce a C response with incidence perpendicular to the plane of the diaphragm.

3.6 OPERATION WITH SOUND.LEVEL METER.

For band levels below 44 db (re $2 \times 10^{-4} \mu$ bar) a sound-level meter, such as the GR Type 1551-C, can be used ahead of the analyzer. The procedure is as follows:
a. Set the BAND LEVEL DB knurled dial so that the indicating area is under the red reference line. Turn the BAND LEVEL DB gray knob fully clockwise.
b. Set the BAND CPS switch to ALL PASS.
c. Connect the output of the sound-level meter to the INPUT (SLM) jack on the analyzer, using the Type 1560-P76 Shielded Cable Assembly (supplied). Calibrate the sound-level meter by the means appropriate to that particular model, or use a GR Type 1552-B Sound Level Calibrator.

TYPE 1558-A OCTAVE BAND NOISE ANALYZER

d. With the calibration signal applied to the sound-level meter, adjust the CAL thumbset control on the panel of the analyzer to give the same meter reading as that of the sound-level meter.
e. To analyze, set the weighting switch on the sound-level meter to either 20 KC or C , and adjust the attenuator on the sound-level meter for a meter reading between 0 and +10 db .
f. Set the BAND CPS switch to the desired band and adjust only the BAND LEVEL DB gray knob to obtain an on-scale meter reading on the analyzer. The band level in db re $2 \times 10^{-4} \mu$ bar is the algebraic sum of the readings of 1) the attenuator of the sound-level meter, 2) the inner (orange) scale of the BAND LEVEL DB dial on the analyzer, and 3) the meter reading of the analyzer.

3.7 OPERATION WITH TYPE 1560-P40 PREAMPLIFIER.

The Type 1560-P 40 Preamplifier can be used with the analyzer to increase the sensitivity to a $24-\mathrm{db}$ sound-pressure level, thus permitting operation at a remote distance from the microphone (refer to paragraph 1.8). Power for the Type 1560-P40 Preamplifier is supplied through terminal No. 2 of the MIKE socket of the analyzer. Plug the Type 1560-P40 Preamplifier and microphone combination directly into the MIKE socket, or make the connection by means of a 2 -conductor shielded cable of convenient length. (Cables are supplied with the Type 1560-P40K Preamplifier and Microphone Set; they may also be purchased separately.) Set the gain switch on the Type 1560-P40 Preamplifier to either X1 or X10, as desired. When it has been calibrated, the analyzer is direct reading with this gain switch set to X 1 . When the switch is set to X 10 , subtract 20 db from the indication of the analyzer to obtain the actual sound-pressure level.

When the microphone and Type $1560-\mathrm{P} 40$ Preamplifier are used with the Type 1558-A Analyzer, the effective sensitivity of the microphone is increased. This is because the voltage loss caused by the input-capacitance load of the Type $1560-\mathrm{P} 40$ on the microphone is less than the loss caused by the input-capacitance load of the analyzer. Also, when a cartridge only is used from a Type $1560-\mathrm{P} 4$ or -P6 Microphone Assembly, the loss due to the presence of the flexible arm is avoided. (The sensitivity given for a Type $1560-\mathrm{P} 4$ or -P6 Microphone is for the combination of microphone cartridge and flexible arm.)

To calibrate the analyzer-preamplifier combination, a Type 1552-B Sound-Level Calibrator is recommended. However, the electrical calibrator in the Type 1558 -A can be used if the internal sensitivity control, R332, is set properly. If the microphone cartridge is supplied with the Type 1560-P40

OPERATING PROCEDURE

Preamplifier or if it is removed from either the Type 1560-P3 or -P5 Microphone and is used on the Type 1560-P40 Preamplifier, set the sensitivity control 1 db higher than the sensitivity specified for the microphone. For example, if the sensitivity of the microphone or cartridge is -61 db , set the internal sensitivity control to -60 db . If the microphone cartridge is removed from a Type $1560-\mathrm{P} 4$ or -P6 Microphone Assembly and is used with the Type $1560-\mathrm{P} 40$ Preamplifier, set the control to indicate 1.6 db greater than the specified sensitivity.

3.8 CHARGING THE BATTERY.

3.8.1 115-VOLT LINE. The analyzer is powered by two nickel-cadmium batteries that provide about 30 hours of operation from full charge. To charge the battery, connect the analyzer to the 115 -volt line, using the Type CAP- 11 Power Cord (supplied). Terminals for this connection are provided on the front panel and are labeled 115 V AC, $25-60 \mathrm{C}$, CHARGE BATTERY. Set the function switch to CHARGE. To charge the battery requires approximately 14 hours. DO NOT OVERCHARGE
3.8.2 230-VOLT LINE. To charge the battery from a 230 -volt line, disconnect the lead short-circuiting resistor R508 (see Figures 4-4 and 4-7). Connect the instrument to the 230 -volt line, using the Type CAP- 11 Power Cord (supplied). Use the 115 -volt CHARGE BATTERY terminals on the front panel. Set the function switch at CHARGE and allow 14 hours to charge the battery fully.

The disconnected lead must be replaced before the battery can be recharged from a 115 -volt line.

3.9 BACKGROUND NOISE.

Whenever possible, sound measurements should be made with negligible background noise. In any band, the background noise level should be at least 10 db below the total measured level for that band. When this is not possible, apply the corrections given in Figure 3-1 for errors due to background noise.

3.10 EFFECT OF PRESENCE OF OBSERVER AND INSTRUMENT CASE.

Except in reverberant fields, the presence of the observer and the instrument case can disturb the sound field and thereby introduce significant errors. ${ }^{1}$ To minimize this effect, adjust the gooseneck assembly so that

[^1]
TYPE 1558-A OCTAVE BAND NOISE ANALYZER

Figure 3-1. Effect of background noise on measurements.
the microphone is located as far as possible from both the observer and the instrument. The observer should stand with the analyzer in front of him and the sound source at his side. For greatest accuracy, mount the microphone on a tripod and connect it to the analyzer by means of an extension cable. The observer and the instrument are thus removed from the sound field.

3.11 PREFERRED ANGLE OF INCIDENCE.

For sounds in reverberant fields, the angle of incidence is indeterminate.

In a free field, the response obtained with an angle of incidence of 70° with respect to the axis of the Type $1560-\mathrm{P} 6$ Microphone Assembly approximates the random incidence response. The directivity characteristic of the Type 1560-P6 Microphone Assembly can be used to advantage if the microphone is positioned with its axis directed toward the source. Under this condition, a C-weighted spectrum is presented to the filter when the internal weighting switch (S103) is set to C PERP (see Figure 4-3).

3.12 CARRYING STRAP.

The Type 2CAM-7060 Carrying Strap (supplied) is used to support the instrument so that the operator's hands are free to manipulate the controls. Attach the strap to the thimbles at the side of the case.

3.13 USE AS A SOUND-LEVEL METER.

The Type 1558-A Octave Band Noise Analyzer can be used to measure C-weighted sound level. Except for the exclusion of A- and B-weighting networks, it meets all requirements of the American Standard Specification for General-Purpose Sound-Level Meters, ASA S1.4-1961.

SERVICE AND MAINTENANCE

To measure C-weighted sound level, set the internal weighting switch to C. Then proceed as in paragraph 3.3 .2 , steps a through e.

3.14 USE OF WIDE-RANGE MICROPHONES.

The frequency response of the microphone preamplifier is essentially flat from 20 cps to 20 kc when the weighting switch is set at 20 KC . Thus it is possible to use wide-range microphones, such as those included in the GR Types 1551-P1L and -P1H Condenser Microphone Systems.

3.15 RECORDING.

The output from the Type 1558-A Octave Band Noise Analyzer can be used to drive the GR Type 1521-B Graphic Level Recorder, to obtain a permanent record of the sound measurement.

SECTION 4

SERVICE AND MAINTENANCE

4.1 GENERAL.

We warrant that each new instrument sold by us is free from defects in material and workmanship and that, properly used, it will perform in full accordance with applicable specifications for a period of two years after original shipment. Any instrument or component that is found within the two-year period not to meet these standards after examination by our factory, district office, or authorized repair-agency personnel will be repaired, or, at our option, replaced without charge, except for tubes or batteries that have given normal service.

The two-year warranty stated above attests the quality of materials and workmanship in our products. When difficulties do occur, our service engineers will assist in any way possible. If the difficulty cannot be eliminated by use of the following service instructions, please write or phone our Service Department (see rear cover), giving full information of the trouble, and of steps taken to remedy it. Be sure to mention the serial and type numbers of the instrument.

Before returning an instrument to General Radio for service, please write to our Service Department or nearest district office, requesting a Returned Material Tag. Use of this tag will ensure proper handling and identification. For instruments not covered by the warranty, a purchase order should be forwarded to avoid unnecessary delay.

4.2 REMOVAL OF INSTRUMENT FROM CASE.

To take the instrument out of its flip-tilt case, turn the panel function switch to OFF and remove the four screws near the front panel, two through the top and two through the bottom of the case.

4.3 TRANSISTOR VOLTAGES.

Table 1 gives the normal voltage from each transistor terminal to ground. Allow a deviation of 10 percent from these figures. Set the panel controls as follows:

BAND LEVEL DB gray knob -- fully clockwise
BAND LEVEL knurled dial -- fully counterclockwise
Function switch -- FAST
BAND CPS switch -- ALL PASS
To measure the voltages, use a high-impedance voltmeter. The battery voltage must be about 21 volts.

4.4 MICROPHONE SENSITIVITY ADJUSTMENT.

The internal sensitivity control (R322) is shown in Figure 4-1. It is adjusted in the GR laboratory to match the sensitivity of the Type 1560-P6 Microphone Assembly that is sent with the analyzer. The procedure for the internal calibration, described in paragraph 3.3.1, is valid only when this control is set to indicate the sensitivity of the microphone being used. If the Type 1560-P6 Microphone Assembly is purchased separately or is replaced, or if another type of piezoelectric microphone is used, this control must be set to the new sensitivity.

4.5 INTERNAL NOISE.

Typical noise levels at the OUTPUT terminals, for various settings of the BAND LEVEL DB and the BAND CPS switches, are given in Table 2. To measure these levels, connect a $425-$ pf capacitor (the equivalent impedance of the Type 1560-P6 Microphone Assembly) across the MIKE input terminals (see Figure 4-2). The capacitor and connecting leads must be shielded to avoid hum or noise interference.

4.6 GAIN CHECK.

A check on the gain gives a good indication of the serviceability of the analyzer. This check should be made at the center frequency of each band, and at 400 or 1000 cps for ALL PASS. Apply 1 volt through a shielded, 425 -pf capacitor, connected at the MIKE input terminals, as shown in Figure 4-2. Set the internal weighting switch to 20 KC and calibrate the analyzer by the method described in paragraph 3.3.1. Select the desired
band and adjust the oscillator to the center frequency of that band. The center frequencies are given in the Specifications. If the instrument is operating properly, the BAND LEVEL DB indication should agree within 1 db with the values in Table 3, except on the lowest and highest bands, where the analyzer will read low by about 1 db .

TABLE 1 - Transistor Voltages.

$\begin{aligned} & \text { TRANSISTOR } \\ & \text { (Type) } \end{aligned}$	TERMINAL	$\begin{aligned} & \text { DC VOLTS } \\ & \text { TO } \\ & \text { GROUND } \end{aligned}$
Q101	K	9.4
(TR-32/Crystalonics C6601)	G	9.3
	A	15.8
Q102	E	15.9
(TR-23/2N520A)*	B	15.8
	C	9.5
Q103	E	9.4
(TR-31/2N445A)*	B	9.5
	C	18.8
Q104	E	1.2
(TR-31/2N445A)*	B	1.3
	C	3.3
Q105	E	3.2
(TR-31/2N445A)*	B	3.3
	C	10.2
Q201	E	1.2
(TR-31/2N445A)*	B	1.3
	C	4.1
$\frac{\text { Q202 }}{(\text { TR-31/2N445A)** }}$	E	4.0
	B	4.1
	C	8,8
$\begin{gathered} \text { Q203 } \\ (\mathrm{TR}-31 / 2 \mathrm{~N} 445 \mathrm{~A})^{*} \end{gathered}$	E	1.2
	B	1.3
	C	4.1

[^2]TABLE 1 (Cont)

TRANSISTOR (Type)	TERMINAL	$\begin{aligned} & \text { DC VOLTS } \\ & \text { TO } \\ & \text { GROUND } \end{aligned}$
Q204	E	4.0
(TR-31/2N445A)*	B	4.1
	C	8.8
Q205	E	1.2
(TR-31/2N445A)*	B	1.3
	C	9.2
Q206	E	1.0
(TR-31/2N445A)*	B	1.1
	C	3.0
Q207	E	2.9
(TR-31/2N445A)*	B	3.0
	C	8.2
Q208	E	1.2
(TR-31/2N445A)*	B	1.3
	C	9.4
Q301	E	2.2
(TR-31/2N445A)*	B	2.3
	C	5.4
Q302	E	5.3
(TR-31/2N445A)*	B	5.4
	C	11.0
Q303	E	10.9
(TR-31/2N445A)*	B	11.0
	C	18.8
Q304	E	17.5
(TR-10/2N1374)	B	17.4
	C	10.7
Q305	E	17.5
(TR-10/2N1374)	B	17.4
	C	9.0

*Selected for H_{fe} between 80 and 125 .

SERVICE AND MAINTENANCE

TABLE 1 (Cont)

TRANSISTOR (Type)	TERMINAL	DC VOLTS TO GROUND
Q501 (TR-31/2N445A)*	E	18.8
	B	18.9
Q502	C	21.0
(TR-31/2N445A)*	E	18.8
	B	18.9
QS03	C	21.0
(TR-31/2N445A)*	E	18.8
	B	18.9

* Selected for H_{fe} between 80 and 125 .

TABLE 2
Typical internal noise levels in db below output voltage corresponding to fullscale meter deflection.

BAND CPS SWITCH SETTING	BAND LEVEL DB SWITCH SETTING									
$18.75-37.5$	68	68	68	68	67	64	54	44	34	24
$37.5-75.0$	68	68	68	68	67	64	54	44	34	24
$75-150$	68	68	68	68	67	66	60	50	41	31
$150-300$	68	68	68	68	68	66	61	52	43	33
$300-600$	68	68	68	68	68	67	62	54	44	34
$600-1200$	68	68	68	68	68	67	62	54	44	34
$1200-2400$	68	68	68	68	68	66	61	52	42	32
$2400-4800$	67	67	67	67	67	65	59	49	39	29
$4800-9600$	67	67	67	67	67	64	57	47	37	27
$9600-19,200$	66	66	66	66	66	63	54	44	35	25
LP - 75	67	67	67	67	66	60	50	39	29	19
ALL PASS	63	63	63	63	62	56	46	36	26	16
$(20 \mathrm{kc})$										

TABLE 3
Band level indications for various microphone sensitivities with 1 volt applied at MIKE terminals.

MICROPHONE SENSITIVITY (db re 1 volt/ μ bar)	TYPE 1558-A BAND LEVEL DB INDICATIONS
-62	136
-61	135
-60	134
-59	133
-58	132
-57	131
-56	130
-55	129
-54	128
-53	127
-52	126

Figure 4-3. Preamplifier and first filter section etched board.

PARTS LIST

R101	75 k	$\pm 5 \%$	1/2 w	REC-20BF(753B)
R102	100 k	$\pm 5 \%$	1/2 w	REC-20BF(104B)
R103	5.1 M	$\pm 5 \%$	1/2 w	REC-20BF(515B)
R104	100 M	$\pm 5 \%$	1/4 w	REC-9BF(107B)
R105	110 k	$\pm 5 \%$	1/2 w	REC-20BF(114B)
R106	100 k	$\pm 20 \%$		POSC-22(104D)
R107	15 k	$\pm 5 \%$	1/2 w	REC-20BF(153B)
R108	100 k	$\pm 5 \%$	1/2 w	REC-20BF(104B)
R109	10 k	$\pm 5 \%$	1/2 w	REC-20BF(103B)
R110	300 k	$\pm 5 \%$	1/2 w	REC-20BF(304B)
R111	20.5 k	$\pm 1 \%$	1/8 w	REF-60(2052A)
R112	20.5 k	$\pm 1 \%$	1/8 w	REF-60(2052A)
R113	30.1 k	$\pm 1 \%$	1/8 w	REF-60(3012A)
R114	14.0 k	$\pm 1 \%$	1/8 w	REF-60(143A)
R115	14.0 k	$\pm 1 \%$	1/8 w	REF-60(143A)
A116	18 k	$\pm 5 \%$	1/2 w	REC-20BF(183B)
R117	33 k	$\pm 5 \%$	1/2 w	REC-20BF(333B)
R118	10 k	$\pm 5 \%$	1/2 w	REC-20BF(103B)
R119	7.5 k	$\pm 5 \%$	1/2 w	REC-20BF(752B)
R120	2.7 k	$\pm 5 \%$	1/2 w	REC-20BF(272B)
R121	430	$\pm 5 \%$	1/2 w	REC-20BF(431B)
R122	300 k	$\pm 5 \%$	1/2 w	REC-20BF(304B)
R123	11 k	$\pm 5 \%$	1/2 w	REC-20BF(113B)
R124	100 k	$\pm 5 \%$	1/2 w	REC-20BF(104B)
R125	1.3 k	$\pm 5 \%$	1/2 w	REC-20BF(132B)
R126	10 k	$\pm 10 \%$		POSC-18(103C)
R127	10 k	$\pm 5 \%$	1/2 w	REC-20BF(103B)
R128	5.62 M	$\pm 1 \%$		REF-70(5624A)
R129	45.3 M			
R201	8.87 k	$\pm 1 \%$	1/8 w	REF-60(8871 A)
R202	6.19 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(6191BB)
R203	3.09 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(3091BB)
R204	4.53 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(4531BB)
R205	33 k	$\pm 5 \%$	1/2 w	REC-20BF(333B)
R206	6.19 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(6191BB)
R207	52.3 k	$\pm 1 \%$	1/8 w	REF-60(5232A)
R208	8.66 k	$\pm 1 \%$	1/8 w	REF-60(8661A)
R209	9.65 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(9651BB)
R210	7.5 k	$\pm 5 \%$	1/2 w	REC-20BF(752B)
R211	1 k	$\pm 20 \%$		POSC-22(102D)
R212	3 k	$\pm 5 \%$	1/2 w	REC-20BF(302B)

PARTS LIST (Cont)

R213	8.66 k	$\pm 1 \%$	1/8 w	REF-60(8661A)
R214	3.01 k	$\pm 1 \%$	1/8 w	REF-60(3011A)
R215	3.25 k	$\pm 1 \%$	1/8 w	REF-60(8251A)
K216	18.2 k	$\pm 1 \%$	1/8 w	REF-60(1822A)
R217	8.87 k	$\pm 1 \%$	1/8 w	REF-60(8871A)
R218	6.19 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(6191BB)
R219	3.09 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(3091BB)
R220	4.53 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(4531BB)
R221	52.3 k	$\pm 1 \%$	1/8 w	REF-60(5232A)
R222	33 k	$\pm 5 \%$	1/2 w	REC-20BF(333B)
R223	6.19 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(6191BB)
R224	8.66 k	$\pm 1 \%$	1/8 w	REF-60(8661A)
R225	9.65 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(9651BB)
R226	11 k	$\pm 1 \%$	1/8w	REF-60(113A)
R227	62 k	$\pm 5 \%$	1/2 w	REC-20BF(623B)
R228	7.5 k	$\pm 5 \%$	1/2 w	REC-20BF(752B)
R229	1 k	$\pm 20 \%$		POSC-22(102D)
R230	3 k	$\pm 5 \%$	1/2 w	REC-20BF(302B)
R231	8.66 k	$\pm 1 \%$	1/8 w	REF-60(8661A)
R232	3.01 k	$\pm 1 \%$	1/8 w	REF-60(3011A)
R233	8.25 k	$\pm 1 \%$	1/8 w	REF-60(8251A)
R234	18.2 k	$\pm 1 \%$	1/8 w	REF-60(1822A)
R235	1.5 k	$\pm 5 \%$	1/2 w	REF-20BF(152B)
R236	5.1 k	$\pm 5 \%$	1/2 w	REC-20BF(512B)
R237	5.36 k	$\pm 1 \%$	1/8 w	REF-60(5361A)
R238	14.3 k	$\pm 1 \%$	1/8 w	REF-60(1432A)
R239	3.09 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(3091BB)
R240	6.19 k	± 0.25	1/8 w	ZREPR-6S(6191BB)
R241	750	$\pm 1 \%$	1/8 w	REF-60(751A)
R242	3.16 k	$\pm 1 \%$	1/8 w	REF-60(3161A)
R243	110 k	$\pm 5 \%$	1/2 w	REC-20BF(114B)
R244	21.5 k	$\pm 1 \%$	1/8 w	REF-60(2152A)
R245	3.16 k	$\pm 1 \%$	1/8 w	REF-60(3161A)
R246	29.4 k	$\pm 0.25 \% 100$	1/8 w	REF-6(2942BB)
R247	8.2 k	$\pm 5 \%$	1/2w	REC-20BF(822B)
R248	3.40 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(342BB)
R249	33 k	$\pm 5 \%$	1/2 w	REC-20BF(333B)
R250	6.19 k	$\pm 0.25 \%$	1/8 w	ZREPR-6S(6191BB)
R251	10.5 k	$\pm 1 \%$	1/8 w	REF-60(1052A)
R252	1 k	$\pm 20 \%$		POSC-22(102D)

PARTS LIST (Cont)

R253	2.4 k	$\pm 5 \%$	1/2 w	REC-20BF(242B)
R254	665	$\pm 1 \%$	1/8 w	REF-60(6650A)
R255	13 k	$\pm 5 \%$	1/2 w	REC-20BF(133B)
R256	300	$\pm 5 \%$	1/2 w	REC-20BF(301B)
R257	1 k	$\pm 20 \%$		POSC-22(102D)
R258	124	$\pm 1 \%$	1/8 w	REF-60(124A)
R259	2.10 k	$\pm 1 \%$	1/8 w	REF-60(212A)
R260	1.5 k	$\pm 5 \%$	1/2 w	REC-20BF(152B)
R261	5.1 k	$\pm 5 \%$	1/2 w	REC-20BF(512B)
R262	62 k	$\pm 5 \%$	1/2 w	REC-20BF(623B)
R263	11 k	$\pm 1 \%$	1/8 w	REF-60(113A)
R264	110 k	$\pm 5 \%$	1/2 w	REC-20BF(114B)
R265	22.1 k	$\pm 1 \%$	1/8 w	REF-60(2212A)
R301	22 k	$\pm 5 \%$	1/2 w	REC-20BF(223B)
R302	30 k	$\pm 5 \%$	1/2 w	REC-20BF(303B)
R303	27 k	$\pm 5 \%$	1/2 w	REC-20BF(273B)
R304	5.1 k	$\pm 5 \%$	1/2 w	REC-20BF(512B)
R305	2 k	$\pm 5 \%$	1/2 w	REC-20BF(202B)
R306	8.2 k	$\pm 5 \%$	1/2 w	REC-20BF (822B)
R307	270	$\pm 5 \%$	1/2 w	REC-20BF(271B)
R308	8.2	$\pm 5 \%$	1/2 w	REC-20BF(822B)
R309	6.2 k	$\pm 5 \%$	1/2 w	REC-20BF(622B)
R310	300 k	$\pm 5 \%$	1/2 w	REC-20BF(304B)
R311	2 k	$\pm 5 \%$	1/2 w	REC-20BF(202B)
R312	11 k	$\pm 5 \%$	1/2 w	REC-20BF(113B)
R313	680	$\pm 5 \%$	1/2 w	REC-20BF(681B)
R314	6.2 k	$\pm 5 \%$	1/2 w	REC-20BF(622B)
R315	6.2 k	$\pm 5 \%$	1/2 w	REC-20BF(622B)
R316	820	$\pm 5 \%$	1/2 w	REC-20BF(821B)
R317	1 M	$\pm 5 \%$	1/2 w	REC-20BF(105B)
R318	20 k	$\pm 1 \%$	1/8 w	REF-60(203A)
R319	147 k	$\pm 1 \%$	1/8 w	REF-60(1583A)
R320	47.5 k	$\pm 1 \%$	1/8 w	REF-60(4752A)
R321	25 k	$\pm 20 \%$		POSC-22(253D)
R322				0971-4220
R323	3.01 k	$\pm 1 \%$	1/8 w	REF-60(3011A)
R324	100 k	$\pm 1 \%$	1/8 w	REF-60(104A)
R325	100 k	$\pm 1 \%$	1/8 w	REF-60(104A)
R501	1 k	$\pm 5 \%$	1/2 w	REC-20BF(102B)
R502	6.2 k	$\pm 5 \%$	1/2 w	REC-20BF(622B)
R503	68 k	$\pm 5 \%$	1/2 w	REC-20BF(683B)

PARTS LIST (Cont)

R504	3 k	5\%	1/2 w RE	REC-20BF(302B)
R505	36 k	5\%	1/2 w RE	REC-20BF(363B)
R506	$3 \mathrm{k} \quad \pm$	5\%	1/2 w REC	REC-20BF(302B)
R507	36 k	5\%	1/2 w R	REC-20BF(363B)
R508	1.2 k	5\%	5 w REP	REPO-43(122B)
R509	910	5\%	5 w RE	REPO-43(911B)
R510	36.5 k	1%	1/8w REF	REF-60(2373A)
101				1558-1100
C102	51.1 pf	$\pm 2 \%$	500 dcwv	COM-15E(0511 A1)
C103	464 pf	$\pm 2 \%$	300 dcwv	COM-15E(4640A1)
C104	. $0013 \mu \mathrm{f}$	$\pm 5 \%$	200 dcwv	COP-24(132B)
C105	. $0030 \mu \mathrm{f}$	$\pm 5 \%$	200 dcwv	COP-24(302B)
C106	. $01 \mu \mathrm{f}$	$\pm 10 \%$	100 dewv	COW-17(103C)
C107	$5 \mu \mathrm{f}$		5 dcwv	COE-57
C110	$40 \mu \mathrm{f}$		6 dcwv	COE-54
C111	$.36 \mu \mathrm{f}$	$\pm 5 \%$	100 dcwv	COP-24(364B)
C112	$.18 \mu \mathrm{f}$	$\pm 5 \%$	100 dcwv	COP-24(184B)
C113	$40 \mu \mathrm{f}$		6 dcwv	COE-54
C114	$10 \mu \mathrm{f}$		25 dcwv	COE-56
C115	$40 \mu \mathrm{f}$		6 dcwv	COE-54
C116	$100 \mu \mathrm{f}$		15 dcwv	COE-46
C117	$0.47 \mu \mathrm{f}$	$\pm 10 \%$	100 dcwv	COW-17(474C)
C201	. $0814 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(8142A)
C202	. $0205 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(203A)
C203	$0.326 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(3263A)
C204	. $00510 \mu \mathrm{f}$	$\pm 1 \%$	200 dcwv	COP-24(4881A)
C205	$1.30 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(135A)
C206	. $0814 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(8142A)
C207	$0.326 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(3263A)
C208	$1.30 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(135A)
C209	. $0200 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(203A)
C210	. $00488 \mu \mathrm{f}$	$\pm 1 \%$	200 dcwv	COP-24(4881A)
C211	$5 \mu \mathrm{f}$		15 dcwv	COE-57
C212	$60 \mu \mathrm{f}$		25 dcwv	COE-47
C213	$40 \mu \mathrm{f}$		6 dcwv	COE-54
C214	$100 \mu \mathrm{f}$		15 dcwv	COE-46
C215	$0.442 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(4423A)
C216	$0.442 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(4423A)

PARTS LIST (Cont)

C217	$.0451 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(4512A)
C218	$.0113 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(1112A)
C219	$0.180 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(184A)
C220	$0.722 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(7223A)
C221	$.00280 \mu \mathrm{f}$	$\pm 1 \%$	200 dcwv	COP-24(2711A)
C222	$.0451 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(4512A)
C223	$0.180 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(184A)
C224	$0.722 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(7223A)
C225	$.0111 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(1112A)
C226	$.00270 \mu \mathrm{f}$	$\pm 1 \%$	200 dcwv	COP-24(2711A)
C227	$5 \mu \mathrm{f}$		15 dcwv	COE-57
C228	$60 \mu \mathrm{f}$		25 dcwv	COE-47
C229	$100 \mu \mathrm{f}$		15 dcwv	COE-46
C230	$0.442 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(4423A)
C231	$0.442 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(4423A)
C232	$10 \mu \mathrm{f}$		25 dcwv	COE-56
C233	$10 \mu \mathrm{f}$		25 dcwv	COE-56
C234	$.00380 \mu \mathrm{f}$	$\pm 1 \%$	200 dcwv	COP-24(3651A)
C235	$.0153 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(154A)
C236	$.0970 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(974A)
C237	$.0242 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(2422A)
C238	$.0606 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(6062A)
C239	$.00365 \mu \mathrm{f}$	$\pm 1 \%$	200 dcwv	COP-24(3651A)
C240	$.0150 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(153A)
C241	$.0606 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(6062A)
C242	$.242 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(2423A)
C243	$0.970 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(974A)
C244	$2.19 \mu \mathrm{f}$	$\pm 1 \%$	100 dcwv	COP-24(2214A)
C245	$600 \mu \mathrm{f}$		3 dcwv	COE-62
C246	$10 \mu \mathrm{f}$		25 dcwv	COE-56
C247	$40 \mu \mathrm{f}$		6 dcwv	COE-54
C248	$100 \mu \mathrm{f}$		15 dcwv	COE-46
C249	$10 \mu \mathrm{f}$		25 dcwv	COE-56
C250	$10 \mu \mathrm{f}$		25 dcwv	COE-56
C252	100 pf	$\pm 5 \%$	500 dcwv	COM-15D(101B)
C301	$40 \mu \mathrm{f}$		6 dcwv	COE-54
C302	$100 \mu \mathrm{f}$		15 dcwv	COE-46
C303	$200 \mu \mathrm{f}$		6 dcwv	COE-44
C304	$10 \mu \mathrm{f}$	$\pm 20 \%$	20 dcwv	COE-61(106D)
C305	$1.5 \mu \mathrm{f}$	$\pm 20 \%$	20 dcwv	COE-60(155D)
C306	$60 \mu \mathrm{f}$		25 dcwv	COE-47
C307	$10 \mu \mathrm{f}$	$\pm 20 \%$	20 dcwv	COE-61(106D)
C308	$10 \mu \mathrm{f}$	$\pm 20 \%$	20 dcwv	COE-61(106D)

PARTS LIST (Cont)

			CAPACITORS (Cont)	
C309	$.00160 \mu \mathrm{f}$	$\pm 5 \%$	200 dcwv	COP-24(162B)
C310	$.00160 \mu \mathrm{f}$	$\pm 5 \%$	200 dcwv	COP-24(162B)
C311	$100 \mu \mathrm{f}$	$\pm 10 \%$	500 dcwv	COM-22B(101C)
C501	$100 \mu \mathrm{f}$		25 dcwv	COE-35
C502	$100 \mu \mathrm{f}$		25 dcwv	COE-35
C503	$100 \mu \mathrm{f}$		25 dcwv	COE-35
C504	$100 \mu \mathrm{f}$		25 dcwv	COE-35

DIODES

CR301	2RED-1003/1N34A(S)	CR305	2RE-1001/1N3253
CR302	2RED-1003/1N34A(S)	CR306	2RE-1001/1N3253
CR303	2RED-1003/1N34A(S)	CR501	2RE-1003/1N3255
CR304	2RED-1003/1N34A(S)		

TRANSISTORS

Q101	TR-32/C6601	Q207	TR-31/2N445A*
Q102	TR-23/2N520A*	Q208	TR-31/2N445A*
Q103	TR-31/2N445A*	Q301	TR-31/2N445A*
Q104	TR-31/2N445A*	Q302	TR-31/2N445A*
Q105	TR-31/2N445A*	Q303	TR-31/2N445A*
Q201	TR-31/2N445A*	Q304	TR-10/2N1374
Q202	TR-31/2N445A*	Q305	TR-10/2N1374
Q203	TR-31/2N445A*	Q501	TR-31/2N445A*
Q204	TR-31/2N445A*	Q502	TR-31/2N445A*
Q205	TR-31/2N445A*	Q503	TR-31/2N445A*

	SWITCHES			
S101	SWRW-247	S201	SWRW-249	
S102	SWRW-250	S202	SWRW-247	
S103	SWRW-248			

Battery	B501	2BA-1000	MISCELLANEOUS		
Battery	B502	2BA-1000	Plug	J301	CDSJ-820
Meter	M301	MEDS-105	SL501	CDMP-1264-2	
Jack	J101	CDSJ-10			

[^3]
NOTES FOR PARTS LIST

When ordering replacement parts, please specify the instrument type number as well as the part numbers of the items required.

All resistances are in ohms, unless otherwise indicated by k (kilohms) or M (megohms).

C RANDOM
CPERP - 20 KC
ENGRAVING FOR SIOJ

Engraving for sioz

Figure 4-6. Schematic diagram for Type 1558-A Octave Band Noise Analyzer (see Figure 4-7).

APPENDIX

SPECIFICATIONS FOR TYPE 1560-P6 MICROPHONE ASSEMBLY (refer to paragraph 1.7)

Abstract

Frequency Response: Typical response is shown in the accompanying plot. Deviations of individual units from the typical response are approximately $\pm 0.3 \mathrm{~dB}$ from 20 to $1000 \mathrm{c} / \mathrm{s}$ and $\pm 1 \mathrm{~dB}$ up to about $7000 \mathrm{c} / \mathrm{s}$. (F igure 1-3). Sensitivity: -60 dB re $1 \mathrm{~V} / \mu$ bar nominal. Temperature Coefficient of Sensifivity: Approximately $-0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$. Internal Impedance: Capacitive; Type $1560-\mathrm{P} 5,390 \mathrm{pF}$ at $25^{\circ} \mathrm{C}$, nominal; Type $1560-\mathrm{P} 6,425 \mathrm{pF}$ at $25^{\circ} \mathrm{C}$, nominal. Temperature coefficient of capacitance: $2.2 \mathrm{pF} /{ }^{\circ} \mathrm{C}$ over range of 0 to $50^{\circ} \mathrm{C}$. Environmental Effects: Microphone is not damaged by temperatures from -30 to $+95^{\circ} \mathrm{C}$ and relative humidities of 0 to 100%. Terminals: Microphones fit 3-terminal microphone cable connector. For hum reduction both microphone terminals may be floated with respect to ground. Cartridge Dimensions: Diameter 0.936 ± 0.002 in (23.7 mm), length $11 / 8$ in (29 mm). Net Weight: Type $1560-\mathrm{P} 5,2 \mathrm{oz}$ (60 g); Type $1560-\mathrm{P} 6,8 \mathrm{oz}$ (0.3 kg). Shipping Weight: Type $1560-\mathrm{P} 5,1 \mathrm{lb}(0.5 \mathrm{~kg})$; Type $1560-\mathrm{P} 6$, $3 \mathrm{lb}(1.4 \mathrm{~kg})$.

SPECIFICATIONS FOR TYPE 1560-P40 PREAMPLIFIER

(refer to paragraph 1.8)
Gain: 1:1 or $10: 1(20 \mathrm{~dB}) \pm 0.3 \mathrm{~dB}$.
Input Capacitance: 6 pF .
Input Resistance: $>500 \mathrm{M} \Omega$ at low audio frequencies.
Output Resistance: $1: 1$ gain - approx 5Ω.
10:1 gain - approx 100Ω.
Noise: $\leq 2.5 \mu \mathrm{~V}$ equivalent input voltage ($400-\mathrm{pF}$ source impedance, C-weighted, 8 -kc effective bandwidth).
Frequency Response: $\pm 0.3 \mathrm{~dB}$ from $5 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$.

Harmonic Distortion at Audio Frequencies:

Open circuit, at 1 V, peak-to-peak: $<0.25 \%$.
Capacitor load of $0.01 \mu \mathrm{~F}$ (equivalent to a cable over $200-\mathrm{ft}$ long): Maximum output (peak-to-peak) at 1% distortion is 5 V for $1 \mathrm{kc} / \mathrm{s}, 2 \mathrm{~V}$ for $10 \mathrm{kc} / \mathrm{s}$.
Accessories Available (in combinations listed below): Power supply, includes two 9.6 -volt nickel-cadmium rechargeable batteries, a charging circuit, a battery-check light, and a power cord.

APPENDIX continued

Types 1560-P96, 1560-P97, and 1560-P98 Adaptors for converting the input pin connections to 3 -terminal shielded microphone connectors, to the pin sockets necessary for the cartridge of a Type 1560-P3 Microphone, and to a General Radio Type 874 Connector, respectively.

Types $1560-\mathrm{P} 72$ ($25-\mathrm{ft}$) and $1560-\mathrm{P} 72 \mathrm{C}$ ($4-\mathrm{ft}$) cables for supplying power to and transferring the signal from the preamplifier.

Type 1560-P95 Adaptor Cable for connecting the signal from the power supply through a cable to a Type 274 Double Plug.

Type 1560-P99 Adaptor Cable for connection from phone plug to microphone plug.
Power Supply: 15 V to $25 \mathrm{~V}, 1 \mathrm{~mA}$ to 2 mA , dc.
Dimensions: length $67 / 8$, diameter 1.155 by 1 in ($175,30,26 \mathrm{~mm}$). Net Weight: $9 \mathrm{oz}(0.3 \mathrm{~kg})$. Shipping Weight: $3 \mathrm{lb}(1.4 \mathrm{~kg})$.

TYPE 1560-P40H
PREAMPLIFIER AND POWER SUPPLY SET
Consists of: Type 1560-P40 Preamplifier Type 1560-P96 Adaptor Type 1560-P98 Adaptor Type 1560-P95 Adaptor Cable Type 1560-P99 Adaptor Cable Type $1560-$ P72 C Cable (4 ft) Type 874-Q2 Adaptor Power Supply
Shipping Weight: $10 \mathrm{lb}(4.6 \mathrm{~kg})$.

TYPE 1560-P40J
PREAMPLIFIER AND ADAPTOR SET
Consists of: Type 1560-P40 Preamplifier
Type 1560-P96 Adaptor Type 1560-P97 Adaptor Type 1560-P98 Adaptor Type 1560-P72C Cable (4 ft) Shipping Weight: $4 \mathrm{lb}(1.9 \mathrm{~kg})$.

TYPE 1560-P40K
PREAMPLIFIER AND MICROPHONE SET
Consists of: Type 1560-P40 Preamplifier Type 1560-P72C Cable (4 ft) Type 1560-P72 Cable (25 ft) Type 1560-P32 Tripod Microphone Cartridge
Shipping Weight: $14 \mathrm{lb}(6.5 \mathrm{~kg})$.

[^4]
GENERAL RADIO COMPANY

WESTCONCORD, MASSACHUSETTS O1781

SALESENGINEERINGOFFICES

NEW ENGLAND*

22 Baker Avenue
Wesi Concord, Massachusetts 01781
Telephone 617 646-0550

METROPOLITAN NEW YORK*

Broad Avenue at Linden
Ridgefield, New Jersey 07657
Telephone N.Y. 212 964-2722
N.J. 201 943-3140

S Y R A C USE

Pickard Building
East Molloy Road
Syracuse, New York 13211
Telephone 315 454-9323

PHILADELPHIA

Fort Washington Industrial Park
Fort Washington, Pennsylvania 19034
Telephone 215 646-8030
WASHINGTON* AND BALTIMORE

11420 Rockville Pike Rockville, Maryland 20852
Telephone 301 946-1600
ORLAND
113 East Colonial Drive
Orlando, Florida 32801
Telephone 305 425-4671

- Repair services are available at these district offices.

CHICAGO *

6605 West North Avenue Oak Park, Illinois 60302
Telephone 312 848-9400

CLEVELAND

5579 Pearl Road
Cleveland, Ohio 44129
Telephone 216886.0150

LOS ANGELES *

1000 North Seward Street Los Angeles, California 90038 Telephone 213 469-6201

SAN FRANCISCO

1186 Los Altos Avenue Los Altos, California 94022
Telephone 415-948-8233

DALLAS*

2600 Stemmons Freeway, Suife 210 Dallas, Texas 75207
Telephone 214 637-2240

TORONTO *

99 Floral Parkway
Toronto 15, Ontario, Canada
Telephone 416 247-2171

MONTREAL

1255 Laird Boulevard
Town of Mount Royal, Quebec, Canada Telephone 514737-3673

[^0]: ${ }^{1}$ E. E. Gross, "Improved Performance Plus a New Look for the Sound-Level Meter", GENERAL RADIO EXPERIMENTER, Vol. 32, No. 17, October, 1958.

[^1]: ${ }^{1}$ R. W. Young, "Can Accurate Measurements Be Made With a Sound-Level Meter Held in Hand?*, SOUND, Vol. 1, No. 1, January - February 1962, pp. 17-24.

[^2]: * Selected for H_{fe} between 80 and 125 .

[^3]: *Selected for H_{fe} between 80 and 125 .

[^4]: (TYPE 1560-P40)

